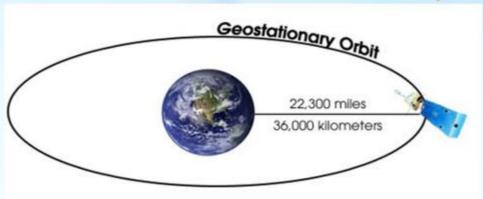

Dr Neeti Singh Scientist – C 20.11.2024 to 23.11.2024

Sat- Met Division India Meteorological Department, Mausam Bhawan, Lodhi Road, New Delhi-110

New era begins

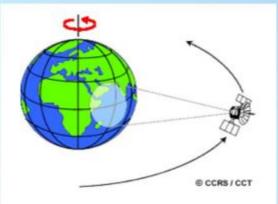
 (Left) The first televised image from space captured by the TIROS-1 satellite (pictured right) on April 1, 1960. Images courtesy of NASA.

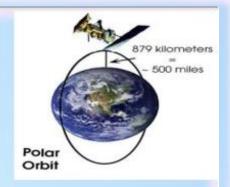
SATELLITES (GEO Satellites) Covering Indian Domain This is a new sensort of Coo Bing of severing Cloba


This is a new concept of Geo-Ring of covering Globe

	INSAT- 3A:	93.5° E longitude	Geostationa ry orbit	April 10, 2003	European Ariane-5 Launch Vehicle
	INSAT- 3DR	74° E.	•	8 September 2016	Geosynchro nous Satellite Launch Vehicle (GSLV Mk II) from the Satish Dhawan Space Centre
	KALPANA -1(formerly Metsat 1)	72.5°E longitude	Geostationa ry orbit	September 12, 2002	Polar Satellite launch vehicle (PSLV)
1	Vietensat -/		Geostationa ry satellite		Operated by EUMETSE T

Geostationary Satellites



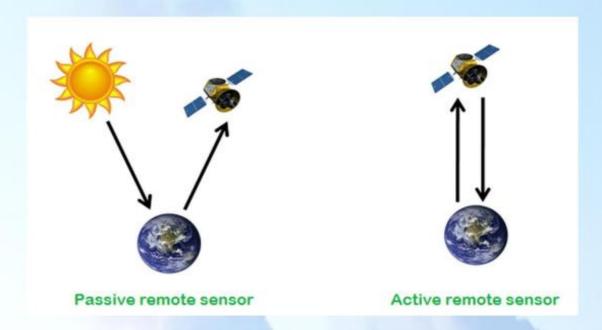

Fig.6. Pictorial representation of a geostationary orbit

Geostationary satellites orbit approximately 35,785 kilometers (22,236 miles) above the equator, completing one orbit every 24 hours. Thus, their orbit is synchronized with the rotation of the Earth about its axis, essentially fixing their position above the same point on the equator (hence the name "geostationary").

Polar-Orbiting Satellites

- The average altitude of polar orbiters is 850 km, which is considerably lower than geostationary satellites.
- Each polar orbiter, whose track is essentially fixed in space, completes 14 orbits every day while the Earth rotates beneath it. So polar orbiters get a worldly view, but not all at once.
- These low-flying satellites scan the Earth in swaths(link is external)about 2600 kilometers wide, covering the entire earth twice every 24 hours
- Polar-orbiting satellites pick up the high-latitude slack left by geostationary satellites.

Visualization Types


Resolutions

- Spatial resolution: Actual area on earth represented by a single pixel of satellite image
 - Visible 1 km x 1 km, water Vapour 8 km x 8 km
- Temporal resolution: Time after which the observation i.e. image is available
 - INSAT 3D : 30 Minutes
- Spectral Resolution: The spectral bandwidth with which the data is collected
 Wavelength Bands used
 - INSAT-3D/R: 0.65 μm(visible), 1.62 μm(SWIR),
 3.9 μm (MIR)

Active vs Passive

 Passive sensors depends on Solar energy whereas Active sensors have their own source

Remote Sensing

- Remote Sensing' refers acquisition of characteristic information's of an object or phenomenon without making any direct or physical contact with the object.
- It involves the measurement of physical properties of objects located at remote distance from the measuring instruments.
- Thus measurement of meteorological parameters through satellite is an example of remote sensing.

Primary Instrument

The main mission is carried out by primary instrument

- Imager
- Sounder
- Imager is a multichannel instrument that senses radiant energy and reflected solar energy from the earths surface and atmosphere.(10 bit)
- Sounder provides data to determine the vertical temperature and moisture profile of the atmosphere, surface and cloud top temperature and ozone distribution.(12 bit)
- Other instrument on board the spacecraft are a search and rescue transponder, a data collection and relay system.
- 6 channel imager
- 19 channel sounder

MET Data Transmitter

		Imager	Sounder
1	Transmit Frequency	C-Band 4781 MHz	C-Band 4798 MHz
2	Data Format	NRZ-M	NRZ-S
3	Data Modulation Scheme	QPSK	BPSK
4	Data Rate	3.92 Mbps	40 Kbps
5	EIRP	23 dBW	7 dBW
6	Transmit coverage	Indian mainland	Indian mainland
7	Cross polarization insolation	2 ddb over 90%	Indian landmass coverage

Basic principles of satellite imagery interpretation

- (a) Brightness
- (b) Texture smooth, fibrous, opaque, or mottled.
- (C) Shape
- (d) Pattern
- (e) Size:
- (f) Vertical Structure:

SPECTRAL REGIONS USED FOR REMOTE EARTH

OBSERVATION

- Visible spectrum (0.4-0.7 m): It is the frequency range of the human eye.
 Maximum solar radiation. Subdivided into three bands: R, G, B.
- Near-infrared (0.7-1.1 m): Also called photographic reflected IR. It is the solar energy reflected by any body. Its behavior is similar to the visible spectrum.

INDIA METEOROLOGICAL DEPARTMENT

- Middle infrared (1.1-8 m): Solar radiation and emission mixing. The atmosphere is significantly affected. It is exploited to measure concentrations of water vapor, ozone, aerosols, etc.
- Thermal infrared (8-14 m): Radiation emitted by the bodies themselves.
 Tp can be determined by a body (thermal IR). Images may be available at any time of the day.
- Microwave (1mm-1m): There is a growing interest of Remote Sensing in this band. Atmospheric disturbances are minor and it is transparent to clouds. Active sensors are typically used.

Name	Wavelenght range	Radiation source	Surface property of interest
Visible (V)	0.4 – 0.7 μm	Solar	reflectance
Near InfraRed (NIR)	0.7 – 1.1 μm	Solar	reflectance
ShortWave InfraRed (SWIR)	1.1 - 3 μm	Solar	reflectance
MidWave InfraRed (MWIR)	3 – 5 μm	Solar, Thermal	Reflectance, temperature
Thermal InfraRed (TIR)	8 – 14 μm	Thermal	temperature
Microwave, radar	1 mm - 1 m	Passive: thermal Active: artificial	Temperature (P) Roughness (A)

Radiance

EM Energy In Joules dQ

$R_{\lambda} = dQ/dt/dA/d\lambda/d\Omega$

- (1)
- (2)
- (3)

- (
- (6)
- (1) Represents the radiance detected at the satellite sensor for a given wavelength
- (2) Represents the energy coming from the earth and arriving at the top of the atmosphere
- (3) Represents the measurement time interval over which the satellite sensor is sensing energy coming from the earth
- (4) Represents the detector area on the satellite that energy is striking
- (5) Represents the wavelength interval that the satellite is sensing
- (6) Represents the solid angle through which the satellite views the earth

The COMET Program

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Basic Laws used

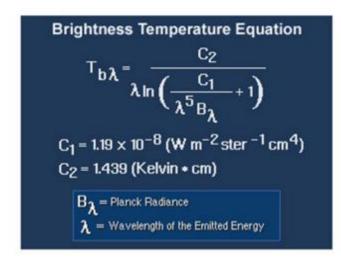
 Planck's Law can be generalized as - Every object emits radiation at all times and at all wavelengths

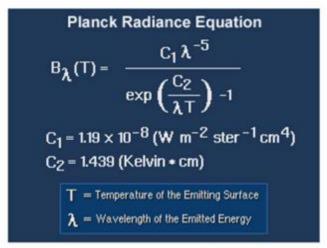
--- While all matter emits radiation at all wavelengths, it does not do so equally.

 Wein's Law states that the wavelength of peak emission is inversely proportional to the temperature of the emitting object.

--- the hotter the object, the shorter the wavelength of max emission

- The Stefan-Boltzmann Law states that the total amount of energy per unit area emitted by an object is proportional to the 4th power of the temperature.
- --- Emitted Energy is directly proportional to Temperature
- Kirchhoff's Law states that for an object whose temperature is not changing, an object that absorbs radiation well at a particular wavelength will also emit radiation well at that wavelength
- ---If absorption at a particular wavelength is good then emission at that wavelength is also good.



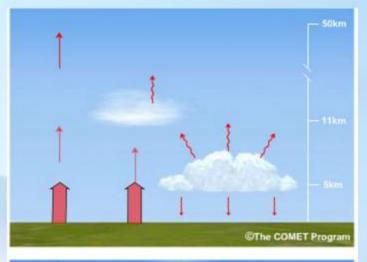


What is brightness temperature?

Definition of Radiance »

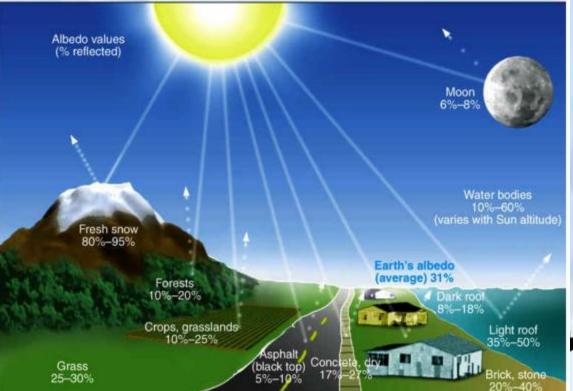
Planck Equation and Brightness Temperature

The COMET Program

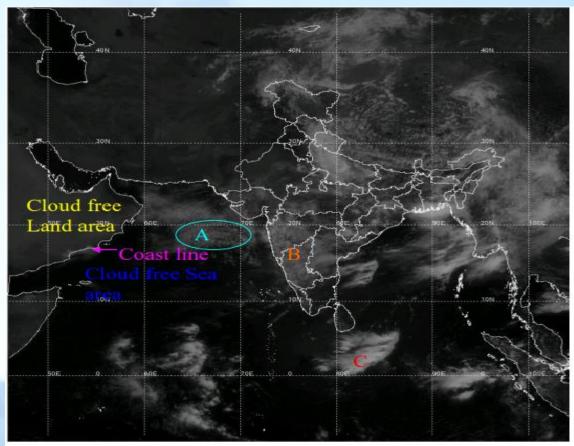

When given a radiance measurement, meteorologists often refer to the associated brightness temperature. The equation on the left is an inversion of the Planck equation which expresses brightness temperature as a function of Planck radiance and wavelength.

Visible and Infrared

- Infrared energy is emitted 24 hours a day and is sensed by satellites continuously
- visible imagery is available only during daylight hours since sunlight is reflected only during that period



Visible imagery

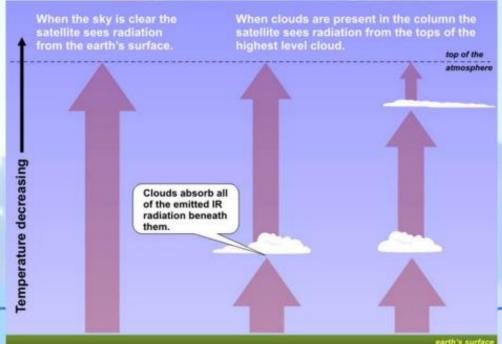

 Now, assuming that it is during the day, the brightness of the visible light reflected by an object back to the satellite largely depends on the object's *albedo*, which is simply the ratio of the amount of reflected light to the amount of

light incident on the object • Land appears brighter than the sea but darker than clouds.

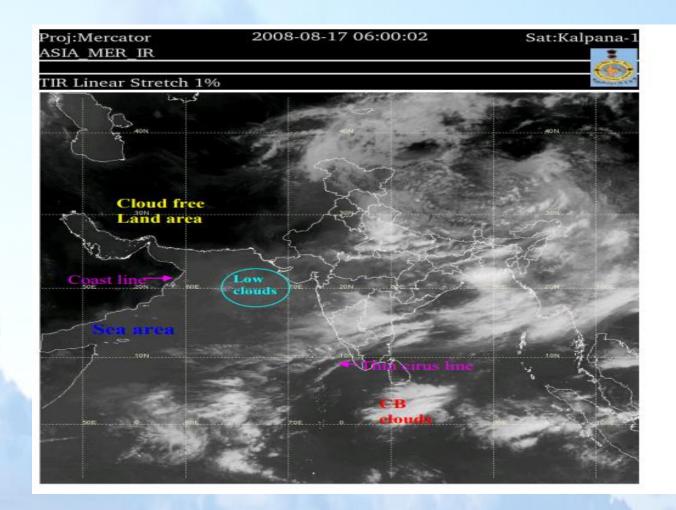
Visible image showing different features

4: Low Clouds(Cu) over Sea, B: Low/medium clouds over land, C: Cumulonimbus clouds.

Visible


- **Distinguishing clouds over a snow-covered** area: is difficult as in visible images both have almost the same brightness (large albedo). Animation of the visible image can reveal clouds moving over the stationary snow/ice.
- Thin clouds: thin clouds over a high albedo desert surface may be seen as misleadingly bright because of scattering light from lower surfaces reaching to the satellite.

Infrared satellite imagery...


- is based on the fact that measuring an object's IR emission tells you something about its temperature.
- displays the temperature of either cloud tops or the earth's surface (if the sky is clear).
- can be combined with the assumption that temperature decreases with height to allow cloud-top heights to be determined. Colder cloud-top temperatures mean higher clouds.
- is **not** able to give any *direct* indication of cloud thickness or the presence of precipitation (although inferences can be made in some cases).

IR image showing different features

Infrared

Detection of fog and low clouds

- (a) **During night time fog** and low clouds can not be differentiated from other land surface features because of negligible temperature contrast among them.
- (b) Land sea contrast: In IR imagery coastline can be seen clearly only when there is a large difference between land and sea surface temperatures.

	VIS imagery	IR Imagery	WV Imagery
Cumulus (Cu) clouds	easily seen in visible picture if there are no other clouds above them	covering a large area can only be seen as a dark gray shade.	can not normally be detected.
Towering cumulus clouds	appears as bright white	appears as light gray ton	appears as dark gray tone like in IR
Cumulonimbus (Cb) clouds	very white cloud with very bright top	very bright white tones with well defined boundaries	Cb is easily identified as bright white shades
Stratus Clouds(St) or Fog	a uniform bright tone, smooth texture with sharp boundaries. Shade becomes darker	Difficult because of low temperature contrast between these (very low) clouds/fog	stratus and fog can not be detected in WV imagery
Stratocumulus(Sc) clouds	as cloud sheet or parallel bands and the shades varies from white to light gray	medium to dark gray shades	– can not be detected

Indian Satellites:

Currently INSAT consists of two Geostationary satellites viz., INSAT-3A and KALPANA-1 in operation having meteorological payload

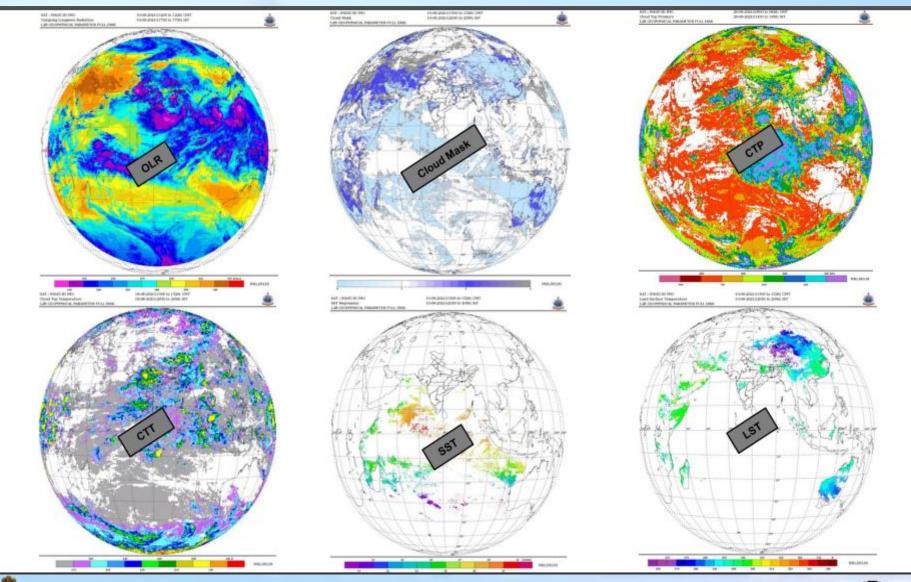
The Indian National Satellite (INSAT) System is a joint venture of the.

- Department of Space (DOS),
- India Meteorological Department (IMD),
- Department of Telecommunication (DOT),
- All India Radio (AIR)
- Doordarshan.

MMDRPS INSAT 3D/3R (Channels Imager + Sounder)

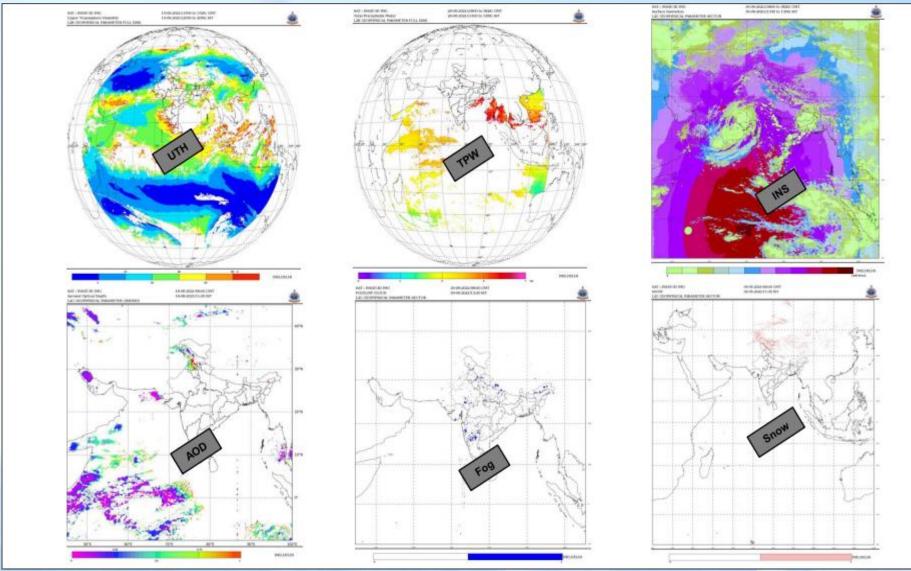
INSAT 3D/3R carries a six channel imager and 19 channel sounder. The 6 spectral channels of INSAT-3D imager are:

Spectral Band	Wave length (µm)	Ground Resolution
VIS	0.55 - 0.75	1km
SWIR	1.55 - 1.70	1 km
MIR	3.80 - 4.00	1 km
WV	6.50 - 7.10	8 km
TIR-1	10.3 – 11.3	4 km
TIR-2	11.5 - 12.5	4 km



Geophysical Parameters to be derived from INSAT -3D (sounder)

Sl.	Parameters	Input	Sl.	Parameters	Input Channels
No.		Channels	No		_
2.00					
1.	Outgoing Long wave Radiation (OLR)	TIR -1, TIR - 2, WV	10.	Water Vapor Wind (WVW)	WV, TIR -1, TIR -2
2.	Quantitative precipitation Estimation (QPE)	TIR -1, TIR - 2, WV	11.	Upper Tropospheric Humidity (UTH)	WV, TIR -1, TIR -2
3.	Sea Surface Temperature (SST)	SWIR,TIR -1, TIR -2, MIR	12.	Temperature, Humidity profile & Total ozone	Sounder all channels
4.	Snow Cover	VIS, SWIR, TIR -1, TIR -2	13.	Value added parameters from sounder products	Sounder products
5.	Snow Depth	VIS, SWIR, TIR -1, TIR -2	14.	FOG	SWIR, MIR, TIR -1, TIR -2
6.	Fire	MIR, TIR -1	15.	Normalized Difference Vegetation Index	CCD



Use of various wavelengths

Channel	Cloud	Gases	Application
HRV 0.7	ъ. О	Broad band VIS	Surface, aerosol, cloud detail (1 km)
VIS 0.6	Scattering	Narrow band	Ice or snow
VIS 0.8	Scal	Narrow band	Vegetation
NIR 1.6		Window	Aerosols, snow<>cloud
IR 3.8	SSIV	Triple window	SST, fog<>surface, ice cloud
WV 6.2	Emissivity	Water vapour	Upper troposphere 300 Hpa humidity
WV 7.3		Water vapour	Mid-troposphere 600 Hpa humidity
IR 8.7		Almost window	Water vapour in boundary layer, ice<>liquid
IR 9.7	<u> </u>	Ozone	Stratospheric winds
IR 10.8	tion	Split window	CTH, cloud analysis, PW
IR 12.0	Absorption	Split window	Land and SST
IR 13.4	4 -	Carbon dioxide	+10.8: Semitransparent-cloud top, air mass and

https://satellite.imd.gov.in/

National Catellite Meteorological Centre

India Meteorological Department Ministry of Earth Sciences, Government of India

INSAT 3D/3R

RAPID User Guide Animation-3D Animation-3R CT-BT

Image Archive Product Information

DRT Secretariat OPERATIONAL STATUS VALIDATION REPORTS FAQ

(Home)

Atmospheric Motion Vector WVW | CMV

Visible Wind | MIR Wind

Vorticity

850mb | 700mb | 500mb | 200mb

Shear

Wind Shear | Mid Shear |

Shear Tendency

Convergence

Low Level Divergence

Upper Level

Current Rainfall Product

HEM | IMR | QPE

Three Hourly Rainfall - 3D HEM | IMR | IMC

L1B FULL DISK

24-11-2021/(1430 to 1457) GMT 24-11-2021/(2000 to 2027) IST

(Home)

Full Disk Images

Visible | SWIR | MIR | IR-1 | IR-2 | WV IR-1 Brightness Temperature | Colour Composite

Asia Sector Images

Visible | SWIR | MIR | IR-1 | IR-2 | WV IR-1 Brightness Temperature | Colour Composite

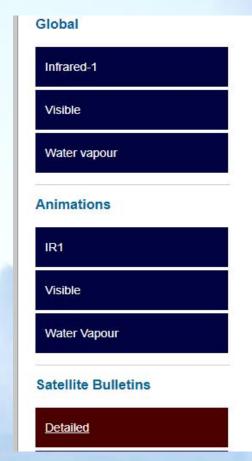
High Resolution Sector Images

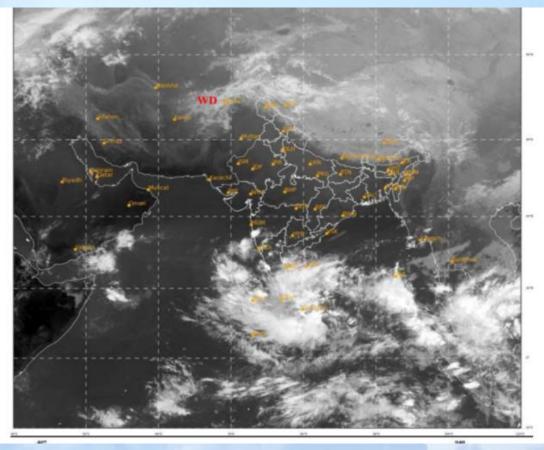
Asia-Sector Images

Visible | SWIR | MIR | IR-1 | IR-2 | WV | Colour IR-1 BT Blended Image IR-1 BT & Visible Sandwich Image

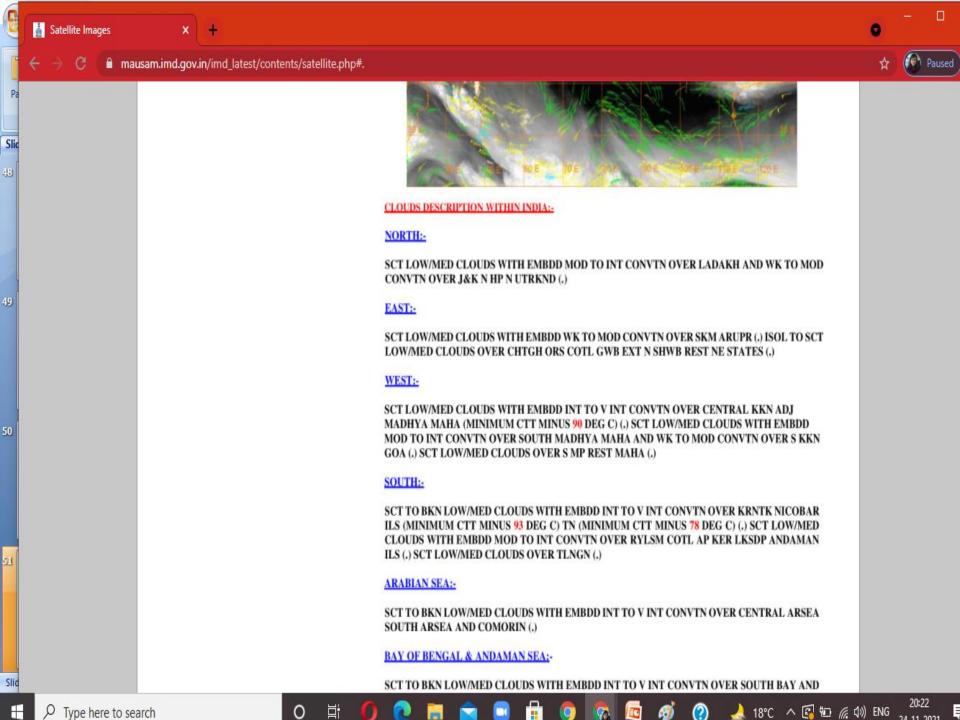
NE-Sector Images

Visible | SWIR | MIR | IR-1 | Colour


NW-Sector Images


Visible | SWIR | MIR | IR-1 | Colour

https://mausam.imd.gov.in/imd_latest/contents/satellite.php



Classification of Low Pressure Systems

Low Pressure System	Abbreviation	Wind Speed Assiciated (Knots)	T.No.
Well marked Low	WML	< 17	1.0
Depression	D	17-27	1.5
Deep Depression	DD	28-33	2.0
Cyclonic Storm	CS	34-47	2.5, 3.0
Severe Cyclonic Storm	SCS	48-63	3.5
Very Severe Cyclonic Storm	VSCS	64-89	4.0,4.5
Extremely Severe Cyclonic Storm	ESCS	91-119	5.0, 5.5,6.0
Super Cyclonic Storm	SuCS	≥120	6.5 to 8.0

Important Facts

- Only twelve, countries from the list below (USSR, USA, France, Japan, China, UK, India, Russia, Ukraine, Israel, Iran and North Korea).
- Which satellite is used in India to track cyclone.

SCATSAT-1 – Satellite for Weather Forecasting, Cyclone Detection and Tracking - ISRO.

The Advanced Scatterometer (ASCAT) Data Products - noaa ...

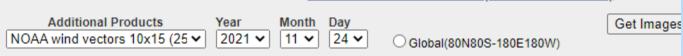
https://manati.star.nesdis.noaa.gov > datasets > ASCAT..

ASCAT

OSWT Home

▶ Product Description

Data Products


- Quik SCAT/SeaWinds
- ▶ OSCAT
- ▶ Rapid SCAT
- ASCAT (METOP-A) >>
- ▶ A SCAT (METOP-B)
- ▶ A SCAT (METOP-C)
- Wind SAT
- Altimeter
- ▶ SMAP
- ▶ ERS-2
- ▶ SSM/I
- ▶GCOMW1/AMSR2
- ▶ CYGNSS
- SCATSAT
- ▶ Aircraft Data
- ▶ICE PRODUCTS
- ▶ Research
- Contact Us

This is web site is not supported on a 24x7 basis and should not be considered operational.

Enter search term(s)

Data from Satellite/Instruments: Advanced Scatterometer (ASCAT METOP-A)

The ASCAT instrument on Metop-A's mission ended on November 15, 2021. Metop-A was launched on 19 October 200 and operated a little over 10 years beyond its design life. You can find more information at https://www.eumetsat.int/plans-metop-end-life.

Ascending Pass

INCHINC	cong name	турс
▼ 👹 3RIMG_30APR2023_2345_L1B_STD_V01R00.h5	3RIMG_30APR2023_2345_L1B	Local File
	GeoX	1D
	GeoX1	1D
	GeoX2	1D
GeoY	GeoY	1D
GeoY1	GeoY1	1D
GeoY2	GeoY2	1D
GreyCount	GreyCount	1D
IMG_MIR	Middle Infrared Count	Geo2D
IMG_MIR_RADIANCE	Middle Infrared Radiance	1D
IMG_MIR_TEMP	Middle Infrared Brightness Temperature	1D
IMG_SWIR	Shortwave Infrared Count	Geo2D
IMG_SWIR_RADIANCE	Shortwave Infrared Radiance	1D
IMG_TIR 1	Thermal Infrared 1 Count	Geo2D
IMG_TIR 1_RADIANCE	Thermal Infrared 1 Radiance	1D
IMG_TIR 1_TEMP	Thermal Infrared 1 Brightness Temperature	1D
IMG_TIR2	Thermal Infrared2 Count	Geo2D
IMG_TIR2_RADIANCE	Thermal Infrared 2 Radiance	1D
IMG_TIR2_TEMP	Thermal Infrared 2 Brightness Temperature	1D
IMG_VIS	Visible Count	Geo2D
IMG_VIS_ALBEDO	Visible Albedo	1D
IMG_VIS_RADIANCE	Visible Radiance	1D
IMG_WV	Water Vapor Count	Geo2D
IMG_WV_RADIANCE	Water Vapor Radiance	1D
IMG_WV_TEMP	Water Vapor Brightness Temperature	1D
 Latitude 	latitude	Geo2D
Latitude_VIS	latitude	Geo2D
Latitude_WV	latitude	Geo2D
 Longitude 	longitude	Geo2D
Longitude_VIS	longitude	Geo2D
Longitude_WV	longitude	Geo2D
Sat_Azimuth	Satellite Azimuth	Geo2D
Sat_Elevation	Satellite Elevation	Geo2D
SCAN_LINE_TIME	Scan Time for Water Vapor Resolution	-
Sun_Azimuth	Sun Azimuth	Geo2D
Sun_Elevation	Sun Elevation	Geo2D
ime time	time	-
SRSND_26APR2023_1100_L2B_SB1_V01R00.h5	3RSND_26APR2023_1100_L2B	Local File
CLD_FLG	Cloud Flag	Geo2D
CLR_PIX	Percentage Clear Pixel	Geo2D
CLR_SKY_BT1	Clear Sky BT1	Geo2D
CLR_SKY_BT10	Clear Sky BT10	Geo2D
CLR_SKY_BT11	Clear Sky BT11	Geo2D
CLR_SKY_BT12	Clear Sky BT12	Geo2D
CLR_SKY_BT13	Clear Sky BT13	Geo2D

Clear Sky BT14

File "3RIMG_30APR2023_2345_L1B_STD_V01R00.h5"

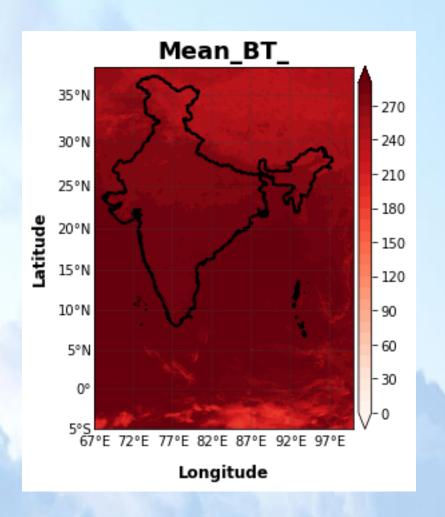
File type: Hierarchical Data Format, version 5

```
netcdf file:/E:/DESKTOP/delete/3RIMG 30APR2023 2345 L1B STD V01R00.h
    GeoX = 2805;
    GeoX1 = 1402;
    GeoX2 = 11220;
   GeoY = 2816;
   GeoY1 = 1408;
    GeoY2 = 11264;
   GreyCount = 1024;
    time = 1;
  variables:
   int GeoX(GeoX=2805);
   int GeoX1(GeoX1=1402);
    int GeoX2(GeoX2=11220);
    int GeoY(GeoY=2816);
    int GeoY1(GeoY1=1408);
    int GeoY2 (GeoY2=11264);
    int GreyCount(GreyCount=1024);
    ushort IMG MIR(time=1, GeoY=2816, GeoX=2805);
      :bits per pixel = 10; // int
      :resolution = 4.0f; // float
      :resolution unit = "km";
      :_FillValue = 1023US; // ushort
      :lab_radiance_scale_factor = 2.97275E-4f; // float
      :lab_radiance_add_offset = -0.00457981f; // float
      :lab_radiance_quad = -2.00028E-12; // double
      :lab radiance scale factor gsics = 3.44217E-4f; // float
      :lab_radiance_add_offset_gsics = -0.0141867f; // float
      :lab_radiance_quad_gsics = -2.31614E-12; // double
      :radiance units = "mW.cm-2.sr-1.micron-1";
      :coordinates = "time Latitude Longitude";
      :wavelength_unit = "micron";
      :central wavelength = 3.907f; // float
      :bandwidth = 0.2f; // float
      :long name = "Middle Infrared Count";
      :invert = "true";
      : ChunkSizes = 1U, 186U, 2805U; // uint
```


CLR SKY BT14

Name	Long Name	Туре
	time	- ^
▼ 3RSND_26APR2023_1100_L2B_SB1_V01R00.h5	3RSND_26APR2023_1100_L2B	Local File
CLD_FLG	Cloud Flag	Geo2D
CLR_PIX	Percentage Clear Pixel	Geo2D
CLR_SKY_BT1	Clear Sky BT1	Geo2D
CLR_SKY_BT10	Clear Sky BT10	Geo2D
CLR_SKY_BT11	Clear Sky BT11	Geo2D
CLR_SKY_BT12	Clear Sky BT12	Geo2D
CLR_SKY_BT13	Clear Sky BT13	Geo2D
CLR_SKY_BT14	Clear Sky BT14	Geo2D
CLR_SKY_BT15	Clear Sky BT15	Geo2D
CLR_SKY_BT16	Clear Sky BT16	Geo2D
CLR_SKY_BT17	Clear Sky BT17	Geo2D
CLR_SKY_BT18	Clear Sky BT18	Geo2D
CLR_SKY_BT2	Clear Sky BT2	Geo2D
CLR_SKY_BT3	Clear Sky BT3	Geo2D
CLR_SKY_BT4	Clear Sky BT4	Geo2D
CLR_SKY_BT5	Clear Sky BT5	Geo2D
CLR_SKY_BT6	Clear Sky BT6	Geo2D
CLR_SKY_BT7	Clear Sky BT7	Geo2D
CLR_SKY_BT8	Clear Sky BT8	Geo2D
CLR_SKY_BT9	Clear Sky BT9	Geo2D
	Cloud Top Pressure	2D
⊕ сπ	Cloud Top Temperature	2D
	Dry Microburst Index	Geo2D
● EMS	Emissivity	2D
FCST_SURF_AIR_H2OMMR	Forecast Surface Air WVMR	Geo2D
FCST_SURF_AIR_TEMP	Forecast Surface Air Temperature	Geo2D
FCST_SURF_PRES	Forecast Surface Pressure	Geo2D
GEO_POT_HEIGHT	Geo-Potential Height	Geo2D
● GeoX	GeoX	1D
GeoY	GeoY GeoY1	1D 1D
	Humidity Profiles(First Guess)	Geo2D
H2OMMRPhy	Humidity Profiles(Phy)	Geo2D
H2OMMRReg	Humidity Profiles(Reg)	Geo2D
● L1_PREC_WATER	L1 Prec Water(1000-900mb)	Geo2D
L2_PREC_WATER	L2 Prec Water (2000 300mb)	Geo2D Geo2D
∆ L3_PREC_WATER	L3 Prec Water(700-300mb)	Geo2D
♦ LAND_FRAC_FOV	Land Fraction FOV	Geo2D
♦ Latitude	latitude	Geo2D
○ U	Lifted Index	Geo2D
	longitude	Geo2D
○ O3VMRFG	Ozone Profiles(First Guess)	Geo2D
O3VMRPhy	Ozone Profiles(Phy)	Geo2D
O3VMRReg	Ozone Profiles(Reg)	Geo2D
plevels	pressure Surface	1D

File "3RIMG_30APR2023_2345_L1B_STD_V01R00.h5"


File type: Hierarchical Data Format, version 5

```
netcdf file:/E:/DESKTOP/delete/3RIMG 30APR2023 2345 L1B STD V01R00.h
   GeoX = 2805;
   GeoX1 = 1402;
   GeoX2 = 11220;
   GeoY = 2816;
   GeoY1 = 1408;
   GeoY2 = 11264;
   GreyCount = 1024;
   time = 1;
 variables:
   int GeoX(GeoX=2805);
   int GeoX1(GeoX1=1402);
   int GeoX2(GeoX2=11220);
   int GeoY(GeoY=2816);
   int GeoYl(GeoYl=1408);
   int GeoY2 (GeoY2=11264);
   int GreyCount(GreyCount=1024);
   ushort IMG MIR(time=1, GeoY=2816, GeoX=2805);
     :bits_per_pixel = 10; // int
     :resolution = 4.0f; // float
     :resolution unit = "km";
     : FillValue = 1023US; // ushort
     :lab radiance scale factor = 2.97275E-4f; // float
     :lab radiance add offset = -0.00457981f; // float
     :lab radiance quad = -2.00028E-12; // double
     :lab_radiance_scale_factor_gsics = 3.44217E-4f; // float
     :lab_radiance_add_offset_gsics = -0.0141867f; // float
     :lab radiance quad gsics = -2.31614E-12; // double
     :radiance units = "mW.cm-2.sr-1.micron-1";
     :coordinates = "time Latitude Longitude";
     :wavelength unit = "micron";
     :central wavelength = 3.907f; // float
     :bandwidth = 0.2f; // float
     :long name = "Middle Infrared Count";
     :invert = "true";
      : ChunkSizes = 1U, 186U, 2805U; // uint
```



```
import numpy as np
import matplotlib.pyplot as plt
import h5py
from mpl_toolkits.basemap import Basemap
import glob
import numpy.ma as ma
import shapefile
import cmaps
path = 'C:/Users/Admin/Downloads/'
filenames =
  glob.glob(f'{path}/*3DIMG_01JAN2023_0000_L1C_ASIA_MER_V01R00.h5',
  recursive=True)
data_list = []
for filename in filenames:
  with h5py.File(filename, 'r') as h5file:
    print(h5file.keys())
    data = h5file['IMG_TIR1'][:]
    data=ma.masked_where(data==1023,data)
    lut=h5file['IMG_TIR1_TEMP'][:]
    tb=lut[data]
    #tb=np.flipud((tb[0:::])) मोसम विज्ञान विमाग
                  INDIA METEOROLOGICAL DEPARTMENT
```


Thank You

